

Arachidonic Acid Release by H_2O_2 Mediated Proliferation of Mouse Embryonic Stem Cells: Involvement of Ca²⁺/PKC and MAPKs-Induced EGFR Transactivation

Sang Hun Lee, Sun Im Na, Jung Sun Heo, Min Hee Kim, Yun Hee Kim, Min Young Lee, Seong Hong Kim, Yun Jung Lee, and Ho Jae Han^{*}

Department of Veterinary Physiology, Biotherapy Human Resources Center (BK 21), College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, South Korea

ABSTRACT

Reactive oxygen species (ROS) generated by a variety of endogenous factors and roles in embryonic stem (ES) cells has yet to be identified. Thus, we examined role of arachidonic acid (AA) in H_2O_2 -indued proliferation of mouse ES cells and its related signaling molecules. AA release was maximally increased in response to 10^{-4} M H_2O_2 for 1 h. In addition, H_2O_2 increased intracellular Ca^{2+} concentration ($[Ca^{2+}]_i$) and the phosphorylation of protein kinase C (PKC), p44/42, p38 mitogen-activated protein kinase (MAPK), and JNK/SAPK. Moreover, H_2O_2 induced an increase in the phosphorylation of epidermal growth factor receptor (EGFR), which was blocked by the inhibition of p44/42 or p38 MAPKs. The inhibition of each signal molecule with specific inhibitors blocked H_2O_2 -induced cytosolic phospholipase A_2 (cPLA₂) activation and AA release. H_2O_2 increased NF- κ B phosphorylation to induce an increase in the levels of cyclooxygenase (COX)-2 proteins. Subsequently, H_2O_2 stimulated PGE₂ synthesis, which was reduced by the inhibition of NF- κ B activation. Moreover, each H_2O_2 or PGE₂ increased DNA synthesis and the number of cells. However, H_2O_2 -induced increase in DNA synthesis was inhibited by the suppression of cPLA₂ pathway. In conclusion, H_2O_2 increased AA release and PGE₂ production by the upregulation of cPLA₂ and COX-2 via Ca²⁺/PKC/MAPKs and EGFR transactivation, subsequently proliferation of mouse ES cells. J. Cell. Biochem. 106: 787–797, 2009. © 2009 Wiley-Liss, Inc.

KEY WORDS: H₂O₂; ROS; ARACHIDONIC ACID; PGE₂; EGFR; MOUSE ES CELL PROLIFERATION

oderate levels of ROS have been shown to directly or indirectly modulate the functions of many enzymes and transcription factors via a multitude of signaling cascades, although excessive ROS results in oxidative damage and induces a cytotoxic effect in cells [Suzuki et al., 1997; Kunsch and Medford, 1999; Miura et al., 2003]. ROS play a role as a primary signal and/or second messenger in low concentration, eliciting a wide variety of biological responses ranging from transcriptional regulation, differentiation, and proliferation to oncogenic transformation [Seifried et al., 2007; Venkatesan et al., 2007]. Indeed, ROS generation at low concentrations by cells may play roles as signaling molecules within the signal transduction cascades triggered by growth factors, cytokines, and hormones [Prata et al., 2004]. Among the physiological roles, ROS was reported as one of factors inducing AA release through increased cPLA₂ activation [Chen et al., 1996]. The lipidmediated metabolite of AA is emerging as key regulator of cell proliferation, chemotaxis, and signal transduction [Siegel et al.,

1982; Axelrod et al., 1988; Peppelenbosch et al., 1995]. It has been suggested that PLA2 is important for several stages of early embryonic development [Farber et al., 1999; Vitale et al., 2005]. The other coordinated AA-metabolizing enzyme is COX, which converts AA to eicosanoids including prostaglandins (PGs), leukotrienes and lipoxins. Moreover, the preimplantation embryos from zygote to the two-cell stage expressed COX-1, while the later stage embryos from eight-cell to blastocyst expressed COX-2 [Wang et al., 2002]. PGE2 is known to be involved in a wide variety of physiological and pathological processes. The PGs generated by embryos have been implicated in a number of embryonic development processes [Lewis, 1989]. It has also been reported that PGE₂ was detected in the medium of cultured human embryos [Holmes et al., 1990] and modulated the expansion of hematopoietic stem cells [North et al., 2007]. Moreover, COX-2-induced PGE₂ protected against H₂O₂-mediated apoptosis in mouse ES cells [Liou et al., 2007]. However, signaling molecules contributed to the H_2O_2 -

Grant sponsor: Korean Rural Development Administration (BioGreen 21 Program) and Stem Cell Research Center of the 21st Century Frontier Research Program (Ministry of Science and Technology); Grant number: 20070401034006-SC 2210.

*Correspondence to: Prof. Ho Jae Han, Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, South Korea. E-mail: hjhan@chonnam.ac.kr

Received 9 September 2008; Accepted 7 November 2008 • DOI 10.1002/jcb.22013 • 2009 Wiley-Liss, Inc. Published online 6 February 2009 in Wiley InterScience (www.interscience.wiley.com).

stimulated AA release and their roles remain to be clearly elucidated in ES cells.

ES cells hold a great deal of promise for the modeling of early development, and also may evidence therapeutic potential. These cells are defined as cells with self-renewal capacity and the ability to generate multiple differentiated cell types [Smith, 2001; Weissman et al., 2001]. Recently, approaches in the field of stem cell biology have emphasized the potential of signaling molecule phenotypic screens, not only for the identification of small molecules that can alter stem cell fate and define the relevant corresponding molecular pathways, but also in terms of their general biological implications in the field of stem cell research. Therefore, there is a growing appreciation of the need to replicate various aspects of the embryonic stem cells' in vivo environment in order to more effectively maintain their native characteristics. Many studies have used H₂O₂ as a model agent to study the mechanism of cell responses resulting from acute oxidative stress in various cell types. Thus, we examined role of AA in H₂O₂-indued proliferation of mouse ES cells and its related signaling molecules.

MATERIALS AND METHODS

MATERIALS

The mouse ES cells were acquired from the American Type Culture Collection (ES-E14TG2a). Fetal bovine serum (FBS) was purchased from BioWhittaker (Walkersville, MD). Hydrogen peroxide (H₂O₂), AG 1478, SB 203580, SP 600125, and monoclonal anti-β-actin were supplied by the Sigma Chemical Company (St. Louis, MO). PD 98059 and SN 50 were acquired from Calbiochem (La Jolla, CA). Bay11-7082 was purchased from Biomol (Butler Pike, PA). Rabbit anticPLA₂, and NF-κB p65 antibody were supplied by Santa Cruz Biotechnology (Delaware, CA). Goat anti-EGFR, and Phospho-EGFR (Try1068) antibody were supplied by Santa Cruz Biotechnology. Phospho-p44/42, p44/42, phospho-p38, p38, phospho-SAPK/JNK, and SAPK/JNK antibody were acquired from New England Biolabs (Herts, UK). Goat anti-rabbit IgG was purchased from Jackson Immunoresearch (West Grove, PA). Liquiscint was obtained from National Diagnostics (Parsippany, NY). All other reagents were of the highest commercially available purity.

ES CELL CULTURE

The mouse ES cells were cultured in Dulbecco's Modified Eagle Medium (DMEM) (Gibco-BRL, Gaithersburg, MD) supplemented with 3.7 g/L sodium bicarbonate, 1% penicillin and streptomycin, 1.7 mM L-glutamine, 0.1 mM β -mercaptoethanol, 5 ng/ml mouse leukemia inhibitory factor, and 15% fetal bovine serum (FBS) without a feeder layer. This was followed by an additional 5 days of culturing in a standard medium plus leukemia inhibitory factor (LIF). The cells were then grown on gelatinized 12-well plates or 60 mm culture dishes in an incubator maintained at 37°C in an atmosphere containing 5% CO₂ in air. The media were changed to serum-free DMEM (5 mM glucose) 24 h prior to the experiment.

ARACHIDONIC ACID RELEASE

To measure the release of arachidonic acid (AA) via a modified version of the method described by Xing et al. [1997], the cells were

incubated with 0.5 μ Ci/ml of [³H] AA for 24 h. The cells were then washed and incubated for 1 h with the indicated agents. At the end of the incubation, the medium was transferred to ice-cold tubes containing 55 mM EGTA and 5 mM EDTA, centrifuged (12,000*g*), and the soluble material was counted in a liquid scintillation counter (LS 6500, Beckman Instruments, Fullerton, CA). Both the [³H] AA released and the cell-associated [³H] AA were standardized with respect to protein. Then, the released [³H] AA was compared by percentage to the cell-associated [³H] AA (present at the beginning of the incubation).

MEASUREMENT OF [Ca²⁺]_I

The changes in $[Ca^{2+}]_i$ were monitored using Fluo-3/AM dissolved in dimethylsulfoxide. The cells in 35 mm culture dishes were rinsed twice with a Bath Solution (140 mM NaCl, 5 mM KCl, 1 mM CaCl₂, 0.5 mM MgCl₂, 10 mM glucose, 5.5 mM HEPES, pH 7.4), incubated in Bath Solution containing 3 μ M fluo-3/AM with 5% CO₂-95% O₂ at 37°C for 40 min, rinsed twice with the Bath Solution, mounted on a perfusion chamber, and scanned every second using confocal microscopy (400×) (fluoview 300, Olympus). The fluorescence was excited at 488 nm and the emitted light was read at 515 nm. All analyses of $[Ca^{2+}]_i$ were processed at a single cell level, and are expressed as the relative fluorescence intensity (RFI).

PROSTAGLANDIN E₂ ASSAY

Mouse ES cells plated on 60-mm culture plates were grown in a FBSfree medium for 24 h and divided into groups according to the experimental protocols. The PGE_2 concentration in the culture medium was measured with an enzyme-linked immunosorbent assay (ELISA) with a PGE_2 High Sensitivity Immunoassay kit (R&D Systems, Minneapolis, MN).

PREPARATION OF CYTOSOLIC AND TOTAL MEMBRANE FRACTIONS

The cytosolic and total membrane fractions were prepared via a slight modification of the method previously reported by Mackman et al. [1991]. The DMEM of mouse ES cells was exchanged 48 h prior to the experiments. The medium was then removed and the cells were washed twice in ice-cold PBS, scraped, harvested via microcentrifugation and re-suspended in buffer A [137 mM NaCl, 8.1 mM Na₂HPO₄, 2.7 mM KCl, 1.5 mM KH₂PO₄, 2.5 mM EDTA, 1 mM dithiothreitol, 0.1 mM PMSF, 10 µg/ml leupeptin (pH 7.5)]. The re-suspended cells were then lysed mechanically on ice via trituration with a 21.1-gauge needle. The lysates were initially centrifuged at 1,000g for 10 min at 4°C. The supernatant was then centrifuged for 1 h at 100,000g at 4°C to prepare the cytosolic and total particulate fractions. The supernatants (cytosolic fraction) were then precipitated with 5 vol. of acetone, incubated for 5 min on ice, and centrifuged for 20 min at 20,000g at 4°C. The resultant pellet was then re-suspended in buffer A containing 1% (v/v) Triton X-100. The particulate fractions containing the membrane fraction were washed twice and re-suspended in buffer A containing 1% (v/v) Triton X-100. The protein in each fraction was quantified via the Bradford procedure [1976]. Twenty micrograms of protein were used for Western blot analysis.

WESTERN BLOT ANALYSIS

The cell homogenates (20 µg protein) were separated via 10% SDSpolyacrylamide gel electrophoresis and transferred to nitrocellulose. After the blots were washed in TBST [10 mM Tris–HCl (pH 7.6), 150 mM NaCl, 0.05% Tween-20], the membranes were blocked for 1 h with 5% skimmed milk and incubated with the appropriate primary antibody at the dilutions recommended by the supplier. The membrane was then washed, and the primary antibodies were detected with goat anti-rabbit IgG or goat anti-mouse IgG conjugated to horseradish peroxidase. The bands were visualized with enhanced chemiluminescence (Amersham Pharmacia Biotech, England, UK).

[³H] THYMIDINE INCORPORATION

The [³H] thymidine incorporation experiments were conducted using the methodology described by Chen et al. [2005]. Zhang et al. [2005] previously reported that most ES cells could be arrested in the G0/G1 phase using a serum deprivation culture. In addition, the synchronized ES cells were shown to successfully reenter a normal cell cycle after being resupplied with serum. In this study, the cells were cultured in a single well until reaching 50% confluence. They were then washed twice with PBS and maintained in serum-free DMEM including all the supplements. After 24 h of incubation, the cells were washed twice in PBS, and incubated with fresh serumfree DMEM including all the supplements and indicated agents. After the indicated incubation period, 1 μ Ci of [methyl-³H] thymidine (specific activity: 74 GBq/mmol, 2.0 Ci/mmol; Amersham Biosciences, Buckinghamshire, UK) was added to the cultures. The cells were incubated for 1 h with [³H] thymidine at 37°C. They were then washed twice in PBS, fixed for 15 min in 10% trichloroacetic acid (TCA) at 23°C, and washed twice with 5% TCA. The acidinsoluble material was dissolved in 0.2 N NaOH over a 12-h period at 23°C. Aliquots were removed and the level of radioactivity was determined using a liquid scintillation counter (LS 6500, Beckman Instruments, Fullerton, CA). The control levels of [³H] thymidine incorporation were determined under conditions in which the cells had been cultured in serum free DMEM without H₂O₂. The values were converted from absolute counts to a percentage of the control in order to allow for comparison between the experimental groups. In order to determine the number of cells, the cells were washed twice with PBS and trypsinized from the culture dishes. The cell suspension was mixed with a 0.4% (w/v) trypan blue solution and the number of live cells was determined using a hemocytometer. Cells failing to exclude the dye were considered nonviable.

BROMODEOXYURIDINE INCORPORATION

The level of 5-bromo-2'-deoxyuridine (BrdU) (a thymidine analog) incorporation was measured to determine the level of DNA synthesis. The ES cells were serum-starved for 24 h prior to H_2O_2 stimulation. The ES cells were then treated with H_2O_2 for 24 h followed by the addition of 15 μ M BrdU. Incubation was continued for an additional 1 h. After washing several times with PBS, the cells were fixed with methanol [10% (v/v) for 10 min at 4°C], followed by incubation in 1 N HCl for 30 min at room temperature. The cells were then washed and incubated with 0.1 M sodium tetraborate for 15 min. Alexa Fluor 488-conjugate Mouse anti-BrdU mAb (diluted

1:200, Molecular Probes, OR) in 2% BSA-PBS was incubated overnight at 4°C. After washing in PBS, coverslips were mounted onto glass slides with a Dako Fluorescent mounting medium using gelvatol and examined using optical microscopy (fluoview 300, Olympus). The mean \pm SE number of BrdU-positive cells per field of vision was determined. At least 10 fields of vision per coverslip were counted.

For the double-labeling experiments, the cells were fixed in acidified alcohol and processed for Oct-4 staining, followed by BrdU staining. The fixed cells were incubated with the rabbit anti-Oct-4 antibody (1: 100, Santa Cruz Biotechnology) for 1 h at room temperature, and with the Alexa Fluor 555 anti-rabbit IgG (1:100, Molecular Probes, Eugene, OR) for 1 h at room temperature. This was followed by incubation in 1 N HCl, neutralization with 0.1 M sodium tetraborate, and incubation with Alexa Fluor 488-conjugate Mouse anti-BrdU mAb for 1 h at room temperature. After washing with PBS, the BrdU/Oct-4 stained cells were examined under confocal microscopy (fluoview 300, Olympus).

FLUORESCENCE ACTIVATED CELL SORTER (FACS) ANALYSIS

The cells were serum-starved for 24 h and pretreated with AACOCF₃, mepacrine or indometachin for 30 min before incubation with H_2O_2 for 24 h. They were then dissociated in trypsin/EDTA, pelleted by centrifugation, and resuspended at approximately 10^6 cells/ml in PBS containing 0.1% BSA. The cells were then fixed in 70% ice-cold ethanol, followed by the incubation in a freshly prepared nuclei staining buffer [250 µg/ml Propidium Iodide (PI) and 100 µg/ml RNase] for 30 min at 37°C. The cell cycle histograms were generated after analyzing the PI-stained cells by FACS (Beckman Coulter, CA). At least 10^4 events were recorded for each sample. The samples were analyzed using CXP software (Beckman Coulter).

STATISTICAL ANALYSIS

The results are expressed as the means \pm standard errors (SE). All the experiments were analyzed by ANOVA, followed in some experiments by a comparison of the treatment means with a control using the Bonnferroni–Dunn test. A *P* value <0.05 was considered significant.

RESULTS

INVOLVEMENT OF Ca^{2+} and PKC activation in H_2O_2 -induced arachidonic acid release

The cells were treated with H_2O_2 (0–10⁻² M) for 1 h to confirm its effect on AA release. In this experiment, H_2O_2 , at $\geq 10^{-4}$ M, significantly increased the level of AA (Fig. 1A). Moreover, in order to determine whether the Ca²⁺ and PKC pathways are involved in H_2O_2 -induced AA release, Ca²⁺ influx and PKC translocation using confocal microscopy or Western blotting were assessed. As is shown in Figure 1B, H_2O_2 (10⁻⁴ M) treatment increased the intracellular Ca²⁺ concentration ([Ca²⁺]_i). Moreover, H_2O_2 increased the translocation of PKC isoforms, including PKC α , δ , and ζ , from the cytosolic to membrane fraction (Fig. 1C). H_2O_2 -induced phoshosphorylation of pan-PKC was inhibited by intra- and extracellular Ca²⁺ depletion using EGTA, BAPTA-AM, or EGTA plus BAPTA-AM (Fig. 1D). Consequently, in experiments conducted

Fig. 1. Effects of Ca^{2+} and PKC on H_2O_2 -induced $[{}^{3}H]$ arachidonic acid (AA) release and cytoplasmic phospholipase A_2 (cPLA₂) phosphorylation. A: The ES cells were treated with different doses of H_2O_2 (0–10⁻² M) for 1 h, after which AA release was assessed as described in the Materials and Methods Section. B: The ES cells were loaded with 2 μ M fluo 3-AM in serum-free medium for 40 min and treated with H_2O_2 (10⁻⁴ M), and the H_2O_2 -induced Ca^{2+} influx was then measured. The changes in $[Ca^{2+}]_i$ were monitored using confocal microscopy, and are expressed as the relative fluorescence intensity. C: The PKC α , δ , and ζ isoforms present in either the cytosolic or membrane compartments were detected via Western blotting, as described in the Materials and Methods Section. D: The ES cells were pretreated with EGTA, BAPTA-AM, or EGTA plus BAPTA-AM for 30 min before the 1 h H_2O_2 (10⁻⁴ M) and the Pan-PKC protein was detected in the membrane compartment. The bands represent 80–90 kDa for Pan-PKC, PKC α , δ , and ζ , and 41 kDa for β -actin. The ES cells were pretreated with EGTA, BAPTA-AM, EGTA plus BAPTA-AM, bisindolylmaleimide I, or staurosporine for 30 min before the 1 h H_2O_2 (10⁻⁴ M), then (E) phosphorylated cPLA₂ was detected by Western blotting and (F) effect of each inhibitor alone on AA release was assessed. Each of the examples shown is representative of four independent experiments. The lower panels (bars) of D and E denote the mean \pm SE of four experiments for each condition determined from densitometry relative to the β -actin. The band represents 110 kDa for cPLA₂. The values are expressed as the means \pm SE of four independent experiments with triplicate dishes. **P* < 0.05 versus Control, ***P* < 0.05 versus H₂O₂ alone.

to evaluate the effects of H_2O_2 on $CPLA_2$ activation and AA release, H_2O_2 increased both $cPLA_2$ activation and AA release, which were inhibited by pretreatment with EGTA, BAPTA-AM, EGTA plus BAPTA-AM, bisindolylmaleimide I, or staurosporine. Each inhibitor alone did not affect AA release (Fig. 1E,F).

INVOLVEMENT OF MAPKS AND EGFR ACTIVATION IN H_2O_2 -INDUCED ARACHIDONIC ACID RELEASE

In experiments conducted to assess the involvement of MAPKs, H_2O_2 increased the phosphorylation of each p44/42, p38 MAPKs, or SAPK/JNK, but this effect was blocked by the inhibition of the Ca²⁺ and PKC pathways (Fig. 2A,B). Consequently, pretreatment with PD 98059 (a p44/42 MAPKs inhibitor), SB 203580 (a p38 MAPK inhibitor), or SP 600125 (a SAPK/JNK inhibitor) blocked H_2O_2 - induced cPLA₂ activation (Fig. 2C) and AA release (Fig. 2D). Moreover, H_2O_2 increased EGFR phosphorylation in a time-dependent manner (Fig. 3A). The activations of these EGFR were inhibited by AG 1478 (Fig. 3B). Also, H_2O_2 -induced EGFR activation

was attenuated by pretreatment with PD 98059 or SB 203580 (Fig. 3C). In addition, the inhibition of EGFR phosphorylation by AG 1478 blocked the H_2O_2 -induced increase of AA release, which was consistent with the [³H] thymidine incorporation results. Each inhibitor alone did not affect AA release and [³H] thymidine incorporation (Fig. 3D,E).

INVOLVEMENT OF NF- κ B ACTIVATION IN H₂O₂-INDUCED COX-2/PGE₂ PATHWAYS

 H_2O_2 increased NF-κB phosphorylation (Fig. 4A), which was blocked via the inhibition of the Ca²⁺ and PKC pathways (Fig. 4B,C). In experiments conducted to assess the effects of H_2O_2 on COX activation, H_2O_2 increased the level of COX 2 protein, but not the level of COX 1, showing a maximum increase at 6 h (Fig. 4D). The H_2O_2 -induced increase in COX 2 levels was blocked by the inhibition of NF-κB activation using each PDTC, SN 50 (NF-κB nucleus translocation inhibitor, 500 ng/ml), or Bay11-7082 (IκB-α phosphorylation inhibitor, 2×10^{-5} M) (Fig. 4E). Moreover, H_2O_2

Fig. 2. Effect of MAPKs on H_2O_2 -induced AA release and $cPLA_2$ phosphorylation. The ES cells were pretreated with (A) EGTA, BAPTA-AM, EGTA plus BAPTA-AM, (B) bisindolylmaleimide I, or staurosporine for 30 min before the 1 h H_2O_2 (10⁻⁴ M), then p44/42 MAPKs, p38 MAPK, and SAPK/JNK phosphorylation were detected. Each example shown is a representative of four experiments. The ES cells were treated with PD 98059 (a p44/42 MAPK inhibitor, 10⁻⁵ M), SB 203580 (a p38 MAPK inhibitor, 10⁻⁶ M), and SP 600125 (a SAPK/JNK inhibitor, 10⁻⁶ M) for 30 min before the H_2O_2 (10⁻⁴ M) treatment for 1 h, then (C) phosphorylated cPLA₂ and (D) AA release were assessed in the presence or absence of each inhibitor. Each of the examples shown is representative of three independent experiments. The lower panels (bars) of C denote the mean ± SE of three experiments for each condition determined from densitometry relative to the β -actin. The values are expressed as the means ± SE of three independent experiments with triplicate dishes. **P*<0.05 versus Control, ***P*<0.05 versus H₂O₂ alone.

Fig. 3. Effect of EGFR activation on H_2O_2 -induced AA release. A: The ES cells were treated with H_2O_2 for different times (0–90 min), then phosphorylated EGFR were detected. B: The ES cells were pretreated with AG 1478 (10⁻⁵ M) at 30 min prior to the H_2O_2 treatment for 1 h and the level of EGFR phosphorylation was assessed by Western blotting. C: The ES cells were treated with PD 98059 or SB 203580 for 30 min prior to the H_2O_2 treatment 1 h and the level of EGFR was assessed by Western blotting. Each of the examples shown is representative of three independent experiments. The lower panels (bars) of A, B, C denote the mean \pm SE of three experiments for each condition determined from densitometry relative to the total-EGF receptor. The bands represent 175 kDa of the phospho-EGF receptor and EGF receptor. D,E: The ES cells were pretreated with AG 1478 for 30 min before the H_2O_2 treatment, then AA release and [³H] thymidine incorporation was assessed. The values are expressed as the means \pm SE of five independent experiments with triplicate dishes. *P < 0.05 versus Control, **P < 0.05 versus H₂O₂ alone.

treatment increased PGE₂ synthesis, which was blocked by the inhibition of NF-kB activation (Fig. 4F). The ES cells expressed the EP1, EP2, EP3, and EP4 receptors. Moreover, the results of RT-PCR showed that the treatment of H₂O₂ increased mRNA level of EP1 receptor, whereas those of other subtypes of EP receptors remained unchanged (Fig. 4G). In experiment to confirm the maintenance of pluripotency in the presence of H₂O₂ exposure, the protein expressions of Oct-4 and SSEA-1 (carbohydrate epitopes stagespecific embryonic antigen-1) were still maintained after treatment with H₂O₂ for 24 h (Fig. 5A). The number of BrdU-labeled cells was also increased in response to H₂O₂, which is consistent with the observed increase in the level of [³H] thymidine incorporation (Fig. 5B–D). As shown in Figure 5E,F, treatment with H_2O_2 or PGE₂ increased thymidine incorporation (47% or 59% increase vs. control) and the number of cells. However, pretreatment with AACOCF₃, mepacrine (cPLA₂ inhibitors) or indometachin (COX-2 inhibitor) blocked the H₂O₂-induced increase in DNA synthesis (Fig. 5G). As shown in Figure 5H, H₂O₂ increased the percentage of the cell population in the S phase (control: 43.28 vs. H₂O₂: 61.07%). However, pretreatment of AACOCF₃, mepacrine, or indometachin decreased the accumulation in S phase by H_2O_2 (50.21%, 52.34%, or 54.21%, respectively).

DISCUSSION

The present study demonstrated that H_2O_2 increased AA release and PGE₂ production via Ca²⁺/PKC/MAPKs activation and EGFR transactivation, consequently stimulating proliferation in mouse ES cells. H_2O_2 stimulates proliferation in mammalian cells in low concentrations and enhances survival in a wide variety of cell types [Stone and Collins, 2002]. Our previous study showed when ES cells were treated with 10⁻⁴ M H₂O₂, glucose transporter activity was significantly stimulated [Na et al., 2007], which in turn the increase of glucose uptake into ES cells led cell proliferation [Lee et al., 2007]. In the other research, the incubation of mesangial cells with 10⁻⁴ M H₂O₂ did not induce cytotoxicity [Johnson et al., 1994]. Therefore, there is possibility that 10⁻⁴ M H₂O₂ enhanced mouse ES functions including growth and survival through a wide variety of signaling molecules.

The present study suggests that Ca^{2+} , PKC, and MAPKs represent key signaling pathways in H_2O_2 -induced cPLA₂ activation and AA release of ES cells. In previous study, certain PKC isoforms play pivotal, specific, or partly antagonistic roles in the regulation of AA production and cellular proliferation [Griger et al., 2007]. Our findings suggest that H_2O_2 regulates PKC α , δ , and ζ to provide

Fig. 4. Effects of NF- κ B on H₂O₂-induced PGE₂ synthesis. A: The ES cells were treated with H₂O₂ for different times (0–360 min), then phosphorylated NF- κ B were detected. The ES cells were pretreated with (B) EGTA, BAPTA-AM, EGTA plus BAPTA-AM, (C) bisindolylmaleimide I, or staurosporine for 30 min prior to the 2 h H₂O₂ (10⁻⁴ M), then NF- κ B phosphorylation was assessed. The example shown is a representative of three experiments. D: The ES cells were treated with H₂O₂ for different times (0–48 h), then COX 1 and COX 2 protein expression levels were detected. D: The ES cells were treated with PDTC, SN 50 (NF- κ B nucleus translocation inhibitors, 500 ng/ml) or Bay 11-7082 (l κ B- α phosphorylation inhibitor, 2 × 10⁻⁵ M) for 30 min prior to H₂O₂ treatment for 6 h, after which COX 2 was detected via Western blotting. Each of the examples shown is representative of three independent experiments. The lower panels (bars) of A, B, D, and E denote the mean ± SE of three experiments for each condition determined from densitometry relative to the β-actin. The bands represent 70–72 kDa of the COX 1 and COX 2. F: The ES cells were treated with SN 50 or Bay 11–7082 for 30 min prior to H₂O₂ treatment and then PGE₂ synthesis was analyzed as described in the Materials and Methods Section. The values are expressed as the mean ± SE of three independent experiments with triplicate dishes. **P* < 0.05 versus Control, ***P* < 0.05 versus H₂O₂ alone. G: The ES cells were incubated with H₂O₂ (10⁻⁴ M) for 24 h, and the expression levels of EP1, 2, 3, 4 receptors, and β-actin (350 bp) mRNA were assessed by RT-PCR. Each example shown is representative of five independent experiments.

that H_2O_2 activates conventional, novel, or atypical PKCs with affecting their translocation, and then causes cPLA₂ phosphorylation and release of AA in ES cells. It was also shown that the PKC isoforms very often play central roles in the proliferation and other functional processes in ES cells [Heo and Han, 2006; Heo et al., 2006, 2007]. Among the PKC capacity, the present study showed that PKC mediates the activation of MAPK pathways including p44/42, p38 MAPKs, and JNK/SAPK to promote activation of cPLA₂ /AA pathway. Other researchers demonstrated that cPLA_{2α} activity in cells is regulated by the intracellular translocation and phosphorylation of the enzyme by MAPKs such as ERK1/2 [Das et al., 2003; Hirabayashi et al., 2004]. Moreover, phosphorylation of cPLA₂ at

Fig. 5. Relationship between H_2O_2 -induced PGE₂ synthesis and cell proliferation. A: The ES cells were treated with H_2O_2 (10⁻⁴ M) for 24 h and then Oct-4 and SSEA-1 were detected via Western blotting. Each of the examples shown is representative of three independent experiments. B: The ES cells were treated with H_2O_2 for 24 h and double-labeled with BrdU and Oct-4. The scale bars represent 20 μ m. C: The percentage of BrdU-positive cells was determined by counting the number of BrdU-positive cells per field of vision. At least 10 fields of vision per coverslip were counted. *P < 0.05 versus Control. D: The ES cells were exposed to H_2O_2 for 0–48 h and pulsed with 1 μ Ci of [³H] thymidine for 1 h prior to counting (*P < 0.05 vs. Control). The values are reported as a mean \pm SE of three independent experiments with triplicate dishes. The ES cells were treated with H_2O_2 (10⁻⁴ M) or PGE₂ (10⁻⁸ M) for 24 h, then (E) [³H] thymidine incorporation and (F) cell counting were evaluated as described in the Materials and Methods Section. G: After pretreatment with AACOCF₃ or mepacrine (10⁻⁶ M) prior to H_2O_2 treatment, [³H] thymidine incorporation was determined. D: The ES cells were pretreated with AACOCF₃, mepacrine (10⁻⁶ M), indometachin (10⁻⁷ M) for 30 min prior to before the H_2O_2 treatment for 24 h, and the cells were washed with PBS, fixed, stained, and analyzed by flow cytometry. The gates were configured manually to determine the percentage of cells at the S phases based on the DNA content. The percentage of cells at the S phases was obtained from three independent experiments with triplicate dishes. *P < 0.05 versus Control, **P < 0.05 versus H_2O_2 alone. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

Ser⁵⁰⁵ by ERK1/2 or p38 MAPK has been shown to cause an increase in enzyme activity [Lin et al. 1993; Kramer et al. 1996; Gijon et al. 2000]. Distinct from other cell types, JNK/SAPK has been shown to involve in H_2O_2 -induced cPLA₂ activation and AA release indicating that activation of JNK also results in H_2O_2 -induced responses in ES cells. These phenomenon can be agreement with that multiple phosphorylation sites are present in cPLA₂ [de Carvalho et al. 1996; Gijon et al. 1999] and that various protein kinases may regulate its activity [Geijsen et al., 2000; Gijon et al., 2000]. Thus, these findings suggest that H_2O_2 , which are regulators of not only Ca²⁺ but also various protein kinases, had significant effects on the process of AA release in ES cells.

In addition, H_2O_2 leads to an EGFR phosphorylation, which induces an increase of cPLA₂-dependent AA release. These processes can be classified into two categories—intracellular signaling molecules including Ca²⁺, PKC, and Src [Prenzel et al., 2001], and matrix metalloprotease-dependent EGF ligand cleavage [Frank et al., 2003]. The finding that the blockage of H_2O_2 -induced phosphorylation of p44/42 MAPKs and p38 MAPK inhibited H_2O_2 induced EGFR phosphorylation demonstrates that these two MAPKs are involved in the rapid kinetics of EGFR transactivation. Consistent with the results of our study, previous studies have shown that EGFR transactivation is required for the activation of p44/42 MAPKs in insulin-like growth factor-treated cells [Roudabush et al., 2000] and p38 MAPK mediated EGFR activation after oxidant injury in renal epithelial cells [Zhuang et al., 2005]. The present study showed that inhibition of EGFR tyrosine kinase led to attenuate H_2O_2 -induced AA release. It has been known that stimulation of AA release is found in many cells expressing EGFR [Bonventre et al., 1990; Hack et al., 1991]. Moreover, EGFR tyrosine kinase has been implicated as a modulator of cPLA₂ activity to liberate AA [Goldberg et al., 1990; Clark and Dunlop, 1991]. Therefore, our findings suggest that H_2O_2 can indirectly regulate ES cell biology via transactivation with EGFR, raising the possibility that AA metabolism can be involved in maintenance of selfrenewal.

The present study also showed that H_2O_2 regulated the production of COX-2 and PGE₂ via an increase in NF- κ B activity. Therefore, NF- κ B is a transcription factor that is required for the induction of COX-2 and PGE₂ by H_2O_2 in ES cells. The presence of cPLA₂ activity in the embryonic rat brain [Waldman et al., 1984; Yoshihara et al., 1992] and the embryonic expression of COX, an enzyme which utilizes the AA produced by PLA₂ activity for PG synthesis [Kawasaki et al., 1993; Piddington et al., 1996], suggest that these

Fig. 6. The hypothesized model for the signal pathways involved in H_2O_2 -induced AA release and cell proliferation. H_2O_2 increased intracellular Ca²⁺ level and PKC activation to induce MAPKs activation. Subsequently, cPLA₂ is activated to stimulate AA release. MAPKs also activate EGFR, which induces cPLA₂ phosphorylation and AA release. In another way, Ca²⁺/PKC-induced NF-kB stimulates COX-2 activity to increase PGE₂ production, which finally influences ES cell proliferation. EGFR, EGF receptor; PKC, protein kinase C; MAPK, mitogen-activated protein kinase; cPLA₂, cytosolic phospholipase A₂; COX-2, cyclooxygenase; PGE₂, prostaglandin E₂. The solid lines are the proposed pathways and the dashed lines are suspected pathways.

two enzymes may perform a developmental function in embryogenesis. Moreover, in hematopoietic stem cells, both COX-1 and -2 participate in the regulation of the stem cell niche and homeostasis [North et al., 2007]. The present study also demonstrated that H₂O₂ increased COX-2 expression, but COX-1 was constitutively expressed. Therefore, under the current experimental conditions, COX-2 is responsible for the increase in PG synthesis, especially PGE₂, which plays a critical role in many cellular functions. Recently, we showed that ES cell growth enhanced by high glucose is mediated through the induction of COX-2 expression and PGE_2 production [Kim and Han, 2008]. Moreover, E-type prostaglandin (EP) receptor subtypes (EP 1-4), which is specific G-protein coupled transmembrane receptors to induce biological actions of PGE₂, were expressed in mouse ES cells. In the present study, treatment with H₂O₂ increased EP1 mRNA expression, suggesting a pivotal role of the EP1 receptor in H₂O₂-induced PGE₂ metabolism of ES cells. Therefore, our findings indicate that the H_2O_2 -mediated activation of signaling molecules contributes to both AA release and PGE₂ synthesis, and is subsequently linked to ES cell proliferation (Fig. 6). On the basis of these results, we think that the discovery of the role played by H₂O₂ in stimulating ES cells self-renewal, together with the other results shown in this study, represent a significant advance in our knowledge of how ES cells pluripotency is maintained by extracellular factors and has application in the development of ES cells culture systems. In conclusion, the results of the current study indicate that AA release via Ca²⁺/PKC and MAPKs-induced EGFR transactivation by H₂O₂ mediated proliferation of mouse embryonic stem cells.

ACKNOWLEDGMENTS

This work was supported by Korean Rural Development Administration (BioGreen 21 Program) and Stem Cell Research Center of the 21st Century Frontier Research Program (code *#* 20070401034006 - SC 2210), Ministry of Education, Science, and Technology Korea. The authors acknowledge a graduate fellowship provided by the Ministry of Education and Human Resources Development through the Brain Korea 21 project, Republic of Korea.

REFERENCES

Axelrod J, Burch RM, Jelsema CL. 1988. Receptor-mediated activation of phospholipase A_2 via GTP-binding proteins: Arachidonic acid and its metabolites as second messengers. Trends Neurosci 11(3):117–123.

Bonventre JV, Gronich JH, Nemenoff RA. 1990. Epidermal growth factor enhances glomerular mesangial cell soluble phospholipase A₂ activity. J Biol Chem 265(9):4934–4938.

Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254.

Chen X, Gresham A, Morrison A, Pentland AP. 1996. Oxidative stress mediates synthesis of cytosolic phospholipase A_2 after UVB injury. Biochim Biophys Acta 1299(1):23–33.

Chen CH, Ho ML, Chang JK, Hung SH, Wang GJ. 2005. Green tea catechin enhances osteogenesis in a bone marrow mesenchymal stem cell line. Osteoporos Int 16(12):2039–2045.

Clark S, Dunlop M. 1991. Modulation of phospholipase A_2 activity by epidermal growth factor (EGF) in CHO cells transfected with human EGF

receptor. Role of receptor cytoplasmic subdomain. Biochem J 274(Pt 3):715–721.

Das S, Rafter JD, Kim KP, Gygi SP, Cho W. 2003. Mechanism of group IVA cytosolic phospholipase A_2 activation by phosphorylation. J Biol Chem 278:41431–41442.

de Carvalho MG, McCormack AL, Olson E, Ghomashchi F, Gelb MH, Yates JR III, Leslie CC. 1996. Identification of phosphorylation sites of human 85-kDa cytosolic phospholipase A_2 expressed in insect cells and present in human monocytes. J Biol Chem 271:6987–6997.

Farber SA, Olson ES, Clark JD, Halpern ME. 1999. Characterization of Ca^{2+} -dependent phospholipase A_2 activity during zebrafish embryogenesis. J Biol Chem 274:19338–19346.

Frank GD, Mifune M, Inagami T, Ohba M, Sasaki T, Higashiyama S, Dempsey PJ, Eguchi S. 2003. Distinct mechanisms of receptor and nonreceptor tyrosine kinase activation by reactive oxygen species in vascular smooth muscle cells: Role of metalloprotease and protein kinase C-δ. Mol Cell Biol 23(5):1581–1589.

Geijsen N, Dijkers PF, Lammers JWJ, Koenderman L, Coffer PJ. 2000. Cytokine-mediated $cPLA_2$ phosphorylation is regulated by multiple MAPK family members. FEBS Lett 471:83–88.

Gijon MA, Spencer DM, Kaiser AL, Leslie CC. 1999. Role of phosphorylation sites and the C2 domain in regulation of cytosolic phospholipase A_2 . J Cell Biol 145:1219–1232.

Gijon MA, Spencer DM, Siddiqi AR, Bonventre JV, Leslie CC. 2000. Cytosolic phospholipase A_2 is required for macrophage arachidonic acid release by agonists that do and do not mobilize calcium. Novel role of mitogenactivated protein kinase pathways in cytosolic phospholipase A_2 regulation. J Biol Chem 275:20146–20156.

Goldberg HJ, Viegas MM, Margolis BL, Schlessinger J, Skorecki KL. 1990. The tyrosine kinase activity of the epidermal-growth-factor receptor is necessary for phospholipase A_2 activation. Biochem J 267(2):461–465.

Griger Z, Páyer E, Kovács I, Tóth BI, Kovács L, Sipka S, Bíró T. 2007. Protein kinase C- β and - δ isoenzymes promote arachidonic acid production and proliferation of MonoMac-6 cells. J Mol Med 85(9):1031–1042.

Hack N, Margolis BL, Ullrich A, Schlessinger J, Skorecki KL. 1991. Distinct structural specificities for functional coupling of the epidermal growth factor receptor to calcium-signalling versus phospholipase A₂ responses. Biochem J 275(Pt 3):563–567.

Heo JS, Han HJ. 2006. PKC and MAPKs pathways mediate EGF-induced stimulation of 2-deoxyglucose uptake in mouse embryonic stem cells. Cell Physiol Biochem 17(3–4):145–158.

Heo JS, Lee YJ, Han HJ. 2006. EGF stimulates proliferation of mouse embryonic stem cells: Involvement of Ca^{2+} influx and p44/42 MAPKs. Am J Physiol Cell Physiol 290(1):C123–C133.

Heo JS, Lee MY, Han HJ. 2007. Sonic hedgehog stimulates mouse embryonic stem cell proliferation by cooperation of $Ca^{2+}/protein$ kinase C and epidermal growth factor receptor as well as Gli1 activation. Stem Cells 25(12):3069–3080.

Hirabayashi T, Murayama T, Shimizu T. 2004. Regulatory mechanism and physiological role of cytosolic phospholipase A_2 . Biol Pharm Bull 27:1168–1173.

Holmes PV, Sjögren A, Hamberger L. 1990. Prostaglandin- E_2 released by preimplantation human conceptuses. J Reprod Immunol 17(1):79–86.

Johnson RJ, Lovett D, Lehrer RI, Couser WG, Klebanoff SJ. 1994. Role of oxidants and proteases in glomerular injury. Kidney Int 45(2):352–359.

Kawasaki M, Yoshihara Y, Yamaji M, Watanabe Y. 1993. Expression of prostaglandin endoperoxide synthase in rat brain. Brain Res Mol Brain Res 19(1–2):39–46.

Kim YH, Han HJ. 2008. High-glucose-induced prostaglandin E₂ and peroxisome proliferator-activated receptor δ promote mouse embryonic stem cell proliferation. Stem Cells 26(3):745–755.

Kramer RM, Roberts EF, Um SL, Bőrsch-Haubold AG, Watson SP, Fisher MJ, Jakubowski JA. 1996. p38 mitogen-activated protein kinase phosphorylates cytosolic phospholipase A_2 (cPLA₂) in thrombin-stimulated platelets. Evidence that proline-directed phosphorylation is not required for mobilization of arachidonic acid by cPLA₂. J Biol. Chem 271:27723–27729.

Kunsch C, Medford RM. 1999. Oxidative stress as a regulator of gene expression in the vasculature. Circ Res 85:753–766.

Lee SH, Heo JS, Han HJ. 2007. Effect of hypoxia on 2-deoxyglucose uptake and cell cycle regulatory protein expression of mouse embryonic stem cells: Involvement of Ca^{2+}/PKC , MAPKs and HIF-1 α . Cell Physiol Biochem 19(5–6):269–282.

Lewis GS. 1989. Prostaglandin secretion by the blastocyst. J Reprod Fertil Suppl 37:261–267.

Lin LL, Wartmann M, Lin AY, Knopf JL, Seth A, Davis RJ. 1993. $cPLA_2$ is phosphorylated and activated by MAP kinase. Cell 72:269–278.

Liou JY, Ellent DP, Lee S, Goldsby J, Ko BS, Matijevic N, Huang JC, Wu KK. 2007. Cyclooxygenase-2-derived prostaglandin E_2 protects mouse embryonic stem cells from apoptosis. Stem Cells 25(5):1096–1103.

Mackman N, Brand K, Edgington TS. 1991. Lipopolysaccharide-mediated transcriptional activation of the human tissue factor gene in THP-1 monocytic cells requires both activator protein 1 and nuclear factor kB binding sites. J Exp Med 174:1517–1526.

Miura Y, Kozuki Y, Yagasaki K. 2003. Potentiation of invasive activity of hepatoma cells by reactive oxygen species is mediated by autocrine/ paracrine loop of hepatocyte growth factor. Biochem Biophys Res Commun 305:160–165.

Na SI, Lee MY, Heo JS, Han HJ. 2007. Hydrogen peroxide increases $[^{3}H]$ -2-deoxyglucose uptake via MAPKs, cPLA₂, and NF- κ B signaling pathways in mouse embryonic stem cells. Cell Physiol Biochem 20(6):1007–1018.

North TE, Goessling W, Walkley CR, Lengerke C, Kopani KR, Lord AM, Weber GJ, Bowman TV, Jang IH, Grosser T, Fitzgerald GA, Daley GQ, Orkin SH, Zon LI. 2007. Prostaglandin E_2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 447(7147):1007–1011.

Peppelenbosch MP, Qiu RG, de Vries-Smits AM, Tertoolen LG, de Laat SW, McCormick F, Hall A, Symons MH, Bos JL. 1995. Rac mediates growth factor-induced arachidonic acid release. Cell 81(6):849–856.

Piddington R, Joyce J, Dhanasekaran P, Baker L. 1996. Diabetes mellitus affects prostaglandin E_2 levels in mouse embryos during neurulation. Diabetologia 39(8):915–920.

Prata C, Maraldi T, Zambonin L, Fiorentini D, Hakim G, Landi L. 2004. ROS production and Glut1 activity in two human megakaryocytic cell lines. Biofactors 20(4):223–233.

Prenzel N, Fischer OM, Streit S, Hart S, Ullrich A. 2001. The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification. Endocr Relat Cancer 8(1):11–31.

Roudabush FL, Pierce KL, Maudsley S, Khan KD, Luttrell LM. 2000. Transactivation of the EGF receptor mediates IGF-1-stimulated shc phosphorylation and ERK1/2 activation in COS-7 cells. J Biol Chem 275(29):22583– 22589.

Seifried HE, Anderson DE, Fisher EI, Milner JA. 2007. A review of the interaction among dietary antioxidants and reactive oxygen species. J Nutr Biochem 18(9):567–579.

Siegel MI, McConnell RT, Bonser RW, Cuatrecasas P. 1982. The lipoxygenase product, 5-hydroperoxy-arachidonic acid, augments chemotactic peptidestimulated arachidonic acid release from HL60 granulocytes. Biochem Biophys Res Commun 104(3):874–881.

Smith AG. 2001. Embryo-derived stem cells: Of mice and men. Annu Rev Cell Dev Biol 17:435–462.

Stone JR, Collins T. 2002. The role of hydrogen peroxide in endothelial proliferative responses. Endothelium 9(4):231–238.

Suzuki YJ, Forman HJ, Sevanian A. 1997. Oxidants as stimulators of signal transduction. Free Radic Biol Med 22:269–285.

Venkatesan B, Mahimainathan L, Das F, Ghosh-Choudhury N, Ghosh Choudhury G. 2007. Downregulation of catalase by reactive oxygen species via PI 3 kinase/Akt signaling in mesangial cells. J Cell Physiol 211(2):457–467.

Vitale A, Perlin J, Leonelli L, Herr J, Wright P, Digilio L, Coonrod S. 2005. Mouse $cPLA_{2y}$, a novel oocyte and early embryo-abundant phospholipase A_{2y} -like protein, is targeted to the nuclear envelope during germinal vesicle breakdown. Dev Biol 282(2):374–384.

Waldman SA, Chepenik KP, Waite BM. 1984. Acyl composition and phospholipase activities in plasma membranes isolated from rat embryos. Int J Biochem 16(6):593–599.

Wang H, Wen Y, Mooney S, Behr B, Polan ML. 2002. Phospholipase A_2 and cyclooxygenase gene expression in human preimplantation embryos. J Clin Endocrinol Metab 87(6):2629–2634.

Weissman IL, Anderson DJ, Gage F. 2001. Stem and progenitor cells: Origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol 17:387–403.

Xing M, Tao L, Insel PA. 1997. Role of extracellular signal-regulated kinase and PKC α in cytosolic PLA₂ activation by bradykinin in MDCK-D1 cells. Am J Physiol 272:C1380–C1387.

Yoshihara Y, Yamaji M, Kawasaki M, Watanabe Y. 1992. Ontogeny of cytosolic phospholipase A_2 activity in rat brain. Biochem Biophys Res Commun 185(1):350–355.

Zhang E, Li X, Zhang S, Chen L, Zheng X. 2005. Cell cycle synchronization of embryonic stem cells: Effect of serum deprivation on the differentiation of embryonic bodies in vitro. Biochem Biophys Res Commun 333(4):1171–1177.

Zhuang S, Yan Y, Han J, Schnellmann RG. 2005. p38 kinase-mediated transactivation of the epidermal growth factor receptor is required for dedifferentiation of renal epithelial cells after oxidant injury. J Biol Chem 280(22):21036–21042.